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dSSTABLE PROBABILITY MEASURE ON Rd
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Abstract. Let p be an index a, 0 < a < 2, stable prob. measure on Rd, the d-Euclidean

space. Let a be the spectral measure of p on the boundary of the unit sphere of Rd; and

assume that the support of a is d-dimensional. Using known results about the support of

p, simple proofs are provided for the following two facts about the continuous bounded

density f, of p : (i) If 1 < a < 2, then fp, is positive on Rd; (ii) if 0 < a < 1, then

f,(x) > 0 if and only if z belongs to the interior of the translated cone ao + CO, where Co

is the smallest closed cone generated by the support of a, and ao is the centering element

of p.
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REMARKS ON THE POSITIVITY OF DENSITIES OF %
STABLE PROBABILITY MEASURE ON Rd

BALRAM RAJPUT

1. Introduction and Preliminaries:. Let p be an index a, 0 < a < 2, stable prob.

measure on R d the d-Euchilidian space. Let a be the spectral measure of p on the boundry

d.of the unit sphere of R ; and assume that the support of a is d-dimensional. Using known

results about the support of p, simple proofs are provided for the following two facts

about the continuous bounded density fp of p : (i) If 1 < a < 2, then fm is positive

on Rd; (ii) if 0 < a < 1, then f,(x) > 0 if and only if x belongs to the interior of the

translated cone ao + Co, where Co is the smallest closed cone generated by the support of a, -

and a0 is the centering element of M. Both of these results are known, we learned this from

the unpublished manuscript of Kesten [4]. In this paper, he showed that if x belong to the

interior of a0 + Co then fo(x) > 0; the fact that f;, vanished on the complement of a0 + Co %

was shown earlier by Taylor [9). Kesten also proved a slightly weaker result than (ii) for

the case 1 < a < 2; however, Fristedt mentioned in [31] that (ii) can be recovered from

Prot 15] and Taylor [9]. All these proofs seem quite lengthy and use, in a substential way,

the representation theory of L.vy processes. Kesten [4] asked if (i) and (ii) can be proved

using only the Fourier analytic methods. Our proof of (i) and (ii) use (via Theorem 2.1)

certain results from the theory of characterstic functions of measures on Rd and also from

the theory of weak convergence; thus, though our proofs are not entirely based on Fourier

analytic methods, they seem more direct and simpler. In addition, we also consider the

analogs of (i) and (ii), when a is not d-dimensional: further, we discuss the orthogonality

and equivalence dichotomy for two stable probability measures on Rd (Theorem 2.6).
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In the rest of this section we include necessary notation and some difinitions.

Let v- be a finite measure on the Borel a-algebra of a separable metric space B, then

S, the support of v1, is the smallest closed set with full v-measure. It is easy to see that

S,{x fB : v(V,) >O0, for every open nbd V, of x} .

For a given measure v on B, S,. will denote, throughout, the support of v-; further, for any

set A C B, A and int(A) will denote the closure and the interior of A, repectively. For

an > 0 and xE B, A(x,e) will denote the set {y fB, Ig - xii < e}. Finally, for a set A

in R d , sp(A) and cc(A) will denote the smallest linear space and the smallest convex cone

generated by A, respectively.

Let p be an index 0 < a < 2 stable probability measure on Rd. Then, as in well known,

for any 0 < r < oo, p can be written as

,where b(a,) denotes the Dirac measure at a,(p) a, c R d and p, is the index a stable

probability measure with the characterstic (ch.) function

I.

(1.2) Pr(y) = exp {0t<UA If> -1i-it I (t) <u UY> dt i d)

*ye Rd where A, = A(O, 1), aA, is the boundry of Al and a is a finite measure on aA,

( the measure a is refered to as the spectral measure p; this measure can and will be

assumed symmetric, if p is symmetric. Further, if 0 < a < 1 (resp. 1 < a < 2), then one

can write

(1.3) p = b(ao) *po (resp. p = b(a.) p.),

2
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where ao, a,.eRd and the ch. function of po (resp. of po) is given by (1.2) with A,.

repla ed by A0 = {0} (resp. by A,, = Rd). The prob. measure p0 and po, are index

a strictly stable components of p in these two cases. For a given index a stable prob.

measure p on Rd, the notation a,, p,, will always be used to denote the elements and the

measures introduced in (1.1) and (1.2).

2. The positivity of the density of stable measures on Rd.

We begin by stating a result for the support of stable prob. measures on Rd. Proofs of
'p

part (a) can be found in [1,10] and that of part (b) in [8]; the proofs of these two results "5d*

in the symmetric case were given earlier in [6,7], for all 0 < a < 2; and, fo the case -

1 < a < 2, in [2].

THEOREM 2.1. Let p be an index 0 < a < 2 prob. measure on Rd; and let 6(a,) and y,.

be the component measures of p as in (1.1). Then we have the following:

(a) If O<a< 1, then

(2.1) p,. = b(b,) y o, Sp,. b,. + Fc(S,)

for every 0 < r < oo, where b, = (f/ udu) and which belongs to -(S 0 ); further,

S,, -(S,) = -(S) for one and hence all 0 < r < oo if and only if Spoy - = R, for

every y e Rd, for which poy - is a non-degenerate measure on R.

(b) If 1 <a < 2, then

' I,for every 0 < r <00o; further, ifl1 < a < 2, then

,._~

Pr 6(c,) *Poo

'p'



fr 0) and which belong to T-(S,) (here

Co 0), therefore, in this case, (2.2) is valied for T = o as well.

REMARK 2.2: Note that it follows immediately, from (1.1), (2.1) and (2.2) that N

(2.3) s. a,. + -9p(s a),

if 1 < a < 2; and

(2.4) S= a, ±b,- + (S,),

if 0 < a < 1. Further, if p is symmetric, then if follows, from (2.2), (2.3), the symmetry

of a, and the facts that a, = 0, that P.

(2.5) = 3-(so)

The following lemma shows that every measure p, (see (1.2)), when restricted to a I

suitable subspace of Rd, has a bounded continuous density, this fact seems to be known /

for quite some time. The folloiwng proof of this lemma is due to Kesten [4]; and included

here for completeness.
,-

We will use the following additional notation throughout the note. If a is a finite mea-

sure on ZA,, then we shall denote "c(S,) and T-(S,), respectively, by Co(a) and Eo(a).

Further, we shall supress a from these notations, whenever there is no likely confusion.

LEMMA 2.3. Let it be the index a stable prob. measure on Rd with the ch. function r ,

given by (1.2), where it is assumed that T can take value 0 (resp. oo), if 0 < a < 1 (resp.

1 < < 2). Then pr(Eo(a)) = 1 and the ch. function of Pr(restricted to Eo(a)) satisfies"C

(2.6) Ifsr(Y)I e-KI1II0

4



for eveiy yeEo(a), where K is the real positive constant given by

K = i f < u,v > a(du)] [s s) ds] .v ea .-in E o(c) n, E (a) +

PROOF: That p(Eo) = 1, follows from (2.1) and (2.2).

Clearly, for y e Eo, we have

dt
(2.7) IA,(y) =exp {(cost < u,y > -1)0+c0 ,(du) . "-

Fix y c E, y t 0, (for y = 0, (2.6) is obvious), then making the change of variable

tj < u, y > = s in (2.7), one obtains

(2.8) log J,,(9) = IIyll I < u, -Y, > I'a(du)] [/ (cossi ')ds]
[A Y Ill/ti i IIo \

where A. = {ufE :< u,y ># 0}. Next noting that a(A.) > 0 (otherwise {ueEo :<

u,y >= 0} fS, will have afull a-measure and "-(S.,) _ {yeEo < u,y >= 0}; which will

contradict the fact -(Sa) = E0 ), one observes that

¢(v) = I< u,v > Ia(du)

is positive on aAj n Eo and, as it is clearly continuous and S, fn E 0 is a compact set, we

have

,p.,.< ,y > '.5 > if 0v 0v)>0

for some v0 e aAI l ED. Therefore, from (2.8),

log IA,.(y)I - lds,

which proves (2.7).

52°



The above lemma immediately yields the following corollary.

COROLLARY 2.4: Let p, be the measure in Lemma 2.3; then Pr restricted to Eo(a) has a b
, .

continuous bounded density; (we shall denote this density, throughout by fr).

Now we are ready to prove the main result of this note.

THEOREM 2.4. Let pu be an index a stable prob. measure on Rd with spectral measure a.

Then we have the following:

(a) HO < a < 1, then, for evezy 0 < r < o, the (bounded continuous) density f,

of the measure p, (see (2.1)) restricted to Eo(a) is positive on the interior (in E) of the 'a.

translated cone C -b, + Co(a) and zero on E\C,; further, for every 0 < r < o, I

(2.9) f,(X) = fo(X - b,)
"%d

for every x c Eo(a).

(b) If 1 < a < 2, then, for every 0 < r < o, the (bounded continuous) density

f,- of Pr (restricted to Eo(a)) is positive on Eo(a); further, if 1 < a < 2, the same is true

of fo, and, in this case, for every 0 < T < C,

fr(x) f0 (x - (c,))

,for every x f Eo(a).

PROOF OF (a): From (2.1), we already know that (2.9) is valied. Next observe, by the con-

tinuity of f, and the fact S,. = Cr, that f, = 0 on E\Cr. Thus, noting that x 'EInt(C,)

if and only if x - brcInt(Co)( note Co = Z(S,), as b0 = 0), the proof of (a) will be

complete if we can prove that fo is positive on Int(Co). We prove this in the following:

6
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Let z e Int(Co); if x = 0 then clearly Co = Eo and one can use the argument of part

(b) to show that fo(O) > 0. So we assume x -6 0, and set xo = 21/ax; then, since xo

is also an interior point of Co, we can find an e > 0 such that A(xo, e) C Co. Now let

x, = )4 '0and let0<e' < < be such that A(x 1 c') 9 C0 = S, . It follows, using

the continuity of fo, that there exists a y1 f A(xi, ') and 0 < el < c' such that

(2.10) A(yi,ei) C A(xi,e') and fo > 0 on A(y,,)

Next observe that A(xo -yl, e) A(xo,E) C Go = So; in face, if zEcx0 -y1 y ), then

3
1iz- X01l 5 lz- (XO- Y0ll ± lim) X- '1 + 11'xi 11 :5

4S

(recallej < ). Hence, again using continuity offo, we can find a zo c A(xo -yi, fl) and 0 <
,' .

E2(< c1 ) such that

(2.11) A(zo, 2) A(xo -yi, e) and fo > 0 on A(zo,12 ).

Now A(zO,1 2 ) C A(xo - y1 ,cl) clearly implies that A(xo - Zo,E 2) C A(yl, e ); therefore,

since y f A(zo, C 2 ) if and only if xo - y A(Xo - zo,62), it follows, from (2.10) and (2.11),

that

(2.12) fo(xo - y)fo(y) > 0, for every ye A(zo, E2 )

Now using (2.12) and the following (which is a direct consiquence of strict stability of po)

fo f() = 2- fo(2-),

we get

2- 1fo(x)= / fo(xo - y)f(y)dy>/ fo(xo - y)fo(y)dy >0.
JEo (0,e )

7 v
--



I

(recall xo = 21\ -).

PROOF OF (b): The basic idea of the proof here is similar to (b); if fact, this case is simpler,

because SP, is a linear space. We give an outline of the proof for a = 1 First note that f,

satisfies (using stability property of p,)

(2.13) fr • f,(.)= 2-'f(2-'(. - a)),
I.d

for some a c Eo. Now let x e E: set so = 2x + a. Then from (2.13), one has

(2.14) fr * f,.(x0) = 2-'f,(x).

Since SA E 0 and f,. is continuous on E 0 , there exists an x1 cE such that f, > 0 on.

A(xl, -) for some e > 0. For the same reasons, we can find zo c A (x 0 - x1 , e1) such that

IT> 0 on A (zO,6 2 ) _ A(xo - xj,i) for some E2 > 0. Then, clearly

f(xo-Y)fr(y)>O for all yfA(zo,6 2 )

and, it follows, from (2.14), that f,(x) > 0.

Completing the proof.

REMARK 2.5: (a) Let p be as in Theorem 2.4; then it follows from the definition of support

and the theorem that u (restricted to some subspace of Rd) has a density f,, if and only
.'

if a, (see (1.1)) belongs to Eo; and in the case when a, fE 0 , p (restricted to Eo) has a

(unique) bounded continuous density fo, on E 0 . In fact, for aay fixed 0 < r < oc, fW(x) =

f,.(x - a,.), for all z e E 0 (where recall f, is the bounded continuous density of P,). Thus,

if 0 < a < 1, fp, is positive on Int(a, + b, + Co) and zero on the complement of this set;

and if 1 < a < 2, fj, is positive on E0 .

8 I
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(b) If p is symmetric, then it follows from (a) above and Remark 2.2 that (re-

stritted to E0 ) has a (unique) bounded continuous density which is positive on E0 .

(c) Let y0 be the index 0 < a < 1 strictly stable prob. measure on Rd as in

Theorem 2.1 (a), and fo be the bounded continuous density of po restricted to E 0 (see

Theorem 2.4 (a)). Then, as noted in Section 1, it was shown by Kesten [4] that fo > 0 .%

on Int(cc(S ,)), and by Taylor [9] that fo = 0 on Eo\Int(cc(S,)). Since for a convex set

A C E0 , Int(A) = Int(A), these two results and the corresponding result for fo proved in

Theorem 2.4 (a) are precisely the same.

Recall that two prob. measures on Rd are called equivalent (--) if they are mutually

absolutely continuous; and they are called singular (1) if they are concentrated on two

disjoint sets. The following theorem shows that two stable measure in Rd satisfying a

mild hyposthesis, are either -, of I.

THEOREM 2.6. Let 0 < a, /6 < 2; and let p and v be two stable prob. measures on Rd ...

:'.:.p:

with indices a and /3, and spectral measures aA, and a,,, respectively. Assume Co(u,)

Eo(ao,), if 0 < a < 1, and assume the same hypothesis for Co(o,,), if 0 < 3 < 1. Then

either p I v or p - v; and M - v if and only ifEo(a) = Eo(.).
S

PROOF: Using (1.1) with 7 = 1, write p = 6(a(,a)) *1t1 and - b (aI (v))* v1; and recall,

from (2.1) and (2.2), that

SA1  a I1 p + Eo (a,.), S, a I (v) +- Eo (a.)

and

s = Eo(a,), S., = Eo(o.).

9
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Now either S , # S,, or S, = S,. We will show that if the first alternative holds then p I v

and if the second alternative holds then p - v.

Clearly, if S,, y Sv, then either one of these two sets is properly contained in the other

or their intersection must be properly contained in both S M and Se,. Suppose the first

possibility holds and say S, C S.; then ai(v) + Eo(au) C ai(p) + Eo(a.); and, hence

aj(v) - ai(p) + Eo(oa,) is a translate of a proper subspace of E. Thus, since pi (restricted

to Eo(am)) has a density, p({,u1 (v) - al(p) + Eo(,,,)} = 0; i.e., p{a](v) + E0(,,,)}=

0. Therefore pI{S,\S,} = 1 and v(S,) 1, and p 1 v. Under the second possibility,

S IA nS, C S,, andS, fl S,, C S,. Now

(2,15) [a (v) + Eo(a,,)] fl [a,(p) + Eo(a,)] = a + Eo(a,,) Eo(am)

A P..

wiere a is any element belonging to the left side of (2.15). Thus, a - a,(p) + Eo(a,,) nl

Eo(a,) C E0 (o,,). Therefore, as before, pi[a - a(p) + o(a,,) n Eo(a,)j = 1[a + Eo(,,) n

Eo(a,)] =0 and v[a+ Eo(ua,)fnEo(a,)] = 0 Hence p(S,\S,,nS,) = 1, v(S,\S, nlS,,) = 1,

-d again p I v,.

If So = SS, then Eo(a,,) = Eo(a,) = E (say); and, since py and v, restricted to E have

positive density on E by Theorem 2.4, it follows pI - v, on E; hence p - v1 on Rd. Now

let A be any Borel set of R with p(A) = 0; then, since p(A) = pl(A-al(p)) and p, j,.
--.

we have vi(A - a,(p)) =0. No, observing that A - aI(p) =A - a (v) + (a (v) - al(p))

and that aI(v) - a,(p)cE, we have

(2.16) v,{(A - a,(v)) n E + a, (v) + a,(p)} = 0;

but, since v, restricted to E is equivalent to ,he Leb. measure on E, it follows from (2.16) %

•% .10



that p (A - a,(v))= 0 or v(A) = 0. Thus P << p, similarly y << v; completing the

proof.

REMARK 2.7: (a) If p and v in the above therorem are symmetric, then Sp = Eo(ou) and

S, = Eo(a,) and hence by the above theorem either p -L v or p v- z, and p -v- z if and

only if S, = S".

(b) If 0 < a, / < 1 and p and v as in the above theorem, then, in general, even in

R1, the equivalance - singularity dichotomy for p and v may fail For example take p with S

S, = [0, oo) and v = b} * then S,, = [1,oo). Similar situation can prevail, even when p

and v are strictly stable in Rd, d > 2; in fact one can take p with S. = {te'6 : t 0 <

O< 1} andvwithS,= {te':t >O, < <}.

A.,
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